Home
Class 11
MATHS
int((x^(2)-1))/((x+3x^(2)+1)Tan^(-1)((x^...

int((x^(2)-1))/((x+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

If int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=klog|tan^(-1)""(x^(2)+1)/x|+c , then k is equal to

int((x^(2)-1)dx)/((x^(4)+3x^(2)+1)Tan^(-1)((x^(2)+1)/(x)))=

Evaluate: int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx

int(x^(2)-1)/((x^(4)+3x^(2)+1)tan^(-1)(x+(1)/(x)))dx=

int_(-1)^(3)(Tan^(-1)""(x)/((x^(2)+1))+Tan^(-1)""(x^(2)+1)/(x))dx=

int ((x^2 -1)dx)/((x^4 + 3x^2 + 1) tan^-1((x^2 + 1)/x)) = k logabs(tan^-1((x^2 +1)/x)) + c

int Tan^(-1)((2x)/(1-x^(2)))dx=

The vlaue of the integral int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to