`(ax+b)^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(ax+b)^m then find D^n(ax+b)^m

The value of D^(n)(ax+b)^(m) is equal to

Find the derivative of (ax + b)^m (cx + d)^n , where a,b,c and d are constants and m,n are integers .

Differentiate (ax)^(m)+((b)/(x))^(n) with respect to 'x'.

Differentiate (ax)^(m)+((b)/(x))^(n) with respect to 'x'.

If u=ax+b, then (d^(n))/(dx^(n))(f(ax+b)) is equal to a.(d^(n))/(du^(n))(f(u)) b.a(d^(n))/(du^(n))(f(u)) c.a^(n)(d^(n))/(du^(n))f(u) d.a^(-n)(d^(n))/(dx^(n))(f(u))

The coefficient of x^(n) in 1+(ax+b)+((ax+b)^(2))/(2!)+((ax+b)^(3))/(3!)+....

(ax)^(m)+(b)^(n)

Differentiate the following wrto x : (ax)^(m)+(b)^(n)