Home
Class 12
MATHS
If z is a non-real complex number lying ...

If z is a non-real complex number lying on the circle `|z|=1`, then z=

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

Let z be a non-real complex number lying on |z|=1, prove that z=(1+itan((arg(z))/2))/(1-itan((arg(z))/(2))) (where i=sqrt(-1).)

If Z is a non-real complex number, then find the minimum value of | (Imz^5)/(Im^5z) |

If Z^5 is a non-real complex number, then find the minimum value of | (Imz^5)/(Im^5z) |

If Z is a non-real complex number, then find the minimum value of | (Imz^5)/(Im^5z) |

Let z be a complex number lying oon a circle |z|=sqrt(2) a and b=b_(1)+ib_(2) (any complex number), then The equation of stright line parallel to the tangent and passing through centre of circle is

If Z^(5) is a non-real complex number,then find the minimum value of (Imz^(5))/(Im^(5)z)