Home
Class 11
PHYSICS
Three planets of same density have radii...

Three planets of same density have radii `R_(1),R_(2)` and `R_(3)` such that `R_(1) = 2R_(2) = 3R_(3)`. The gravitational field at their respective surfaces are `g_(1), g_(2)` and `g_(3)` and escape velocities from their surfeces are `upsilon_(1),upsilon_(2)` and `upsilon_(3)`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Three circles with centres C_(1),C_(2) and C_(3) and radii r_(1),r_(2) and r_(3) where *r_(-)1

In DeltaABC , the inradius and exradii are r,r_(1),r_(2) and r_(3) respectively. Then r.r_(1)r_(2)r_(3) equals

Two planets A and B have the same averge density . Their radii R_A and R_B are such that R_A : R_B = 3 : 1 . If g_A and g_B are the acceleration due to gravity at the surfaces of the planets, the g_A : g_B equals

Two planets A and B have the same average density . Their radii R_A and R_B are such that R_A: R_B = 3 : 1 . If g_A and g_B are the acceleration due to gravity at the surface of the planets , the g_A : g_B equals

Two planets A and B have the same averge density . Their radii R_A and R_B are such that R_A : R_B = 3 : 1 . If g_A and g_B are the acceleration due to gravity at the surfaces of the planets, the g_A : g_B equals

Suppose there are two planets, 1 and 2, having the same density but their radii are R_(1) and R_(2) respectively, where R_(1) gt R_(2). The accelerations due to gravity on the surface of these planets are related as