Home
Class 11
MATHS
" Q."34" ) The unit vector along "vec i+...

" Q."34" ) The unit vector along "vec i+vec j

Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector along vec(i)+vec(j) is :-

Let veca = hat i + hat j + hat k, vec b = 2 hat i + 3 hat j vec c = 3 hat i + 5 hat j - 2 hat k , vec d = - hat j + hat k (i) Find vec b - vec a . (ii) Find the unit vector along vec b - vec a . (iii) Prove that vec b - vec a and vec d - vec c are parallel vectors.

The vector - hat i+ hat j- hat k bisects the angle between the vector vec c and 3 hat i+4 hat j . Determine the unit vector along vec c .

Find the unit vector along vec a - vec b where veca = hat i + 3 hat j - hat k and vec b = 3 hat i + 2 hat j + hat k .

if vec b=2 vec i + 3 vec j - vec k and vec c= vec i + 4 vec j + 5 veck then find a vector vec a such that vec b * vec a =0 and vec c * vec a=0 . Also find the unit vector along vec a .

If vec a=6hat(i)+7hat(j)+7hat(k) , find the unit vector along with this vector

If vec a=6hat(i)+7hat(j)+7hat(k) , find the unit vector along with this vector

If vec a=6hat(i)+7hat(j)+7hat(k) , find the unit vector along with this vector

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector