Home
Class 12
MATHS
In the triangle ABC, if the sides a,b re...

In the triangle ABC, if the sides a,b reamain constant but the base angles A and B very, then show that,
`(dA)/(sqrt(a^(2) - b^(2) sin^(2)A)) = (dB)/(sqrt(b^(2) - a^(2) sin^(2)B)).`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In an acute triangle ABC if sides a,b are constants and the base angles A and B vary, then show that (dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABC if the sides a, b be constant and the base angles A and B vary, then show that , (dA)/sqrt(a^2-b^2sin^2A) =(dB)/sqrt(b^2-a^2 sin^2B)

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In an acute triangle A B C if sides a , b are constants and the base angles Aa n dB vary, then show that (d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))

In the triangle ABC, two sides b,c and angle B are given, side a has two values a_(1) and a_(2) . Show that |(a_(1)-a_(2))|=2sqrt(b^(2)-c^(2)sin^(2)B) .