Home
Class 12
MATHS
Find the sum of the infinite series 1+...

Find the sum of the infinite series
`1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+…..`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinite series 1+(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+(1.3.5.7)/(3.6.9.12)+... is equal to

Find the sum of the infinite series. 1/(1.2)+1/(2.3)+1/(3.4)+...

Find the sum of the infinite series. 1/(1.5)+1/(3.7)+1/(5.9)+...

Find the sum of the infinite series. 1/(1.2.3)+1/(2.3.4)+1/(3.4.5)+...

If z=(1)/(3)+(1.3)/(3.6)+(1.3.5)/(3.6.9)+.... then

Find the sum of the infinite series 1+(2)/(3)+(3)/(3^2)+(4)/(3^3) +........

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo

Prove that : Find the sum of the infinite series 1+(2)/(3).(1)/(2)+(2.5)/(3.6)((1)/(2))^(2)+(2.5.8)/(3.6.9)((1)/(2))^(3)+......oo