Home
Class 12
MATHS
" 2.If "y=e^(ack^(-1)x),-1<=x<=1" ,show ...

" 2.If "y=e^(ack^(-1)x),-1<=x<=1" ,show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)-a^(2)y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(e^(-x)+xe^(-x))," then " (1+x)y_(1)=

If y=tan^(-1)((2)/(e^(-x)-e^(x)))" then "(1+e^(2x))y_(1)=

graph of |y|=|1+e^(|x|)-e^(-x)|

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)), prove that (dy)/(dx)=1-y^(2)

Plot y=e^(x),y=e^(x)+1 and y=e^(x)-1.

Plot y=e^(x),y=e^(x)+1 and y=e^(x)-1.

Plot y=e^(x),y=e^(x)+1 and y=e^(x)-1.

Plot y=e^(x),y=e^(x)+1 and y=e^(x)-1.

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

The solution of the differential equation (1+y^2)+(x-e^(tan^-1y))dy/dx=0 is (A) x e^(2 tan^-1y)=e^(tan^-1y)+k (B) (x-2)=k e^(-tan^-1y) (C) 2 x e^(tan^-1y)=e^(2 tan^-1y)+k (D) x e^(tan^-1y)=tan^-1y+k