Home
Class 12
MATHS
I=int sqrt(cot x)dx...

I=int sqrt(cot x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals. int sqrt(cot x ) dx

If I=int(sqrt(cot x)-sqrt(tan x))dx, then I equal sqrt(2)log(sqrt(tan x)-sqrt(cot x))+Csqrt(2)log|sin x|cos x+sqrt(sin2x)|+Csqrt(2)log|sin x-cos x+sqrt(2)sin x cos x|+sqrt(2)log|sin(x+(pi)/(4))+sqrt(2)sin x cos x|+C

int_(0)^((pi)/(2))(sqrt(cot x))/(sqrt(tan x)+sqrt(cot x))dx=

Evaluate: int(sqrt(tan x)+sqrt(cot x))dx

Evaluate: int(sqrt(tan x)+sqrt(cot x))dx

int_((pi)/(6))^((pi)/(3))(sqrt(tan x))/(sqrt(tan x)+sqrt(cot x))dx

The integral int sqrt(cot x)e^(sqrt(sin x))sqrt(cos x)dx equals

int_(0)^((pi)/(2))(sqrt(tan x))/(sqrt(tan x+sqrt(cot x)))dx

Prove that: int_(0)^((pi)/(4))(sqrt(tan x)+sqrt(cot x)dx=sqrt(2)*(pi)/(2)