Home
Class 10
MATHS
" 11."x^(2)-4x-5...

" 11."x^(2)-4x-5

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(x)=2x^(3)-11x^(2)-4x+5andg(x)=2x+1 , show that g(x) is not a factor of p(x).

Check whether q(x) is a multiple of r(x) or not. Where q(x)=2x^(3)-11x^(2)-4x+5, r(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

check whether p(x) is a multiple of g(x) or not (i) p(x) =x^(3)-5x^(2)+4x-3,g(x) =x-2. (ii) p(x) =2x^(3)-11x^(2)-4x+5,g(x)=2x+1

Add the following algebraic expressions : (i) 5x^(3)- 3x + 7 , 2x^(2) - 11 and 7x^(3) - 11x^(2) + 4x- 3

Find the values of a and b for which ax^(3)-11x^(2)+ax+b is exactly divisible by x^(2)-4x-5

For real values of x, the value of expression (11x^(2)-12x-6)/(x^(2)+4x+2)

"Verify LMVT for " f(x) =-x^(2)+4x-5 " and " x in [-1,1]

Check whether p(x) is a multiple of g(x) or not: p(x)=2x^3-11x^2-4x+5'g(x)=2x+1