Home
Class 12
MATHS
" (b) "y sqrt(1+x)=sqrt(1-x)...

" (b) "y sqrt(1+x)=sqrt(1-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y)=(sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x))," then "(dy)/(dx)=

If y = tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))) then dy/dx =

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.

The slope of the tangent to the curve tan y = ((sqrt(1 + x)) - (sqrt(1 -x)))/(sqrt( 1+ x) + (sqrt (1 -x)) at x = 1/2 is

if y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)] then prove that (1)/(2sqrt(x)sqrt(1-x))

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

y = tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))),find dy/dx.

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)