Home
Class 12
MATHS
The total number of ordered pair(x, y) s...

The total number of ordered pair(x, y) satisfying `|x|+|y|=4,sin((pix^2)/3)=1` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to a)4 b)6 c)10 d)12

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to a)4 b)6 c)10 d)12

The total number of ordered pair(x,y) satisfying |x|+|y|=4,sin((pi x^(2))/(3))=1 is equal to

The total number of ordered pairs (x,y) satisfying |x|+|y|=4, sin((pi)x^(2)//3)=1 is equal to

The number of ordered pairs (x,y) satisfying |x|+|y|=2 and sin""((pix^(2))/(3))=1 is/are