Home
Class 12
MATHS
The limit underset( x rarr a ) ("Lim") (...

The limit `underset( x rarr a ) ("Lim") (2 -( a)/(x))^(tan ((pix)/( 2a)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

underset( x rarr 1) ( "Lim") ( tan "" ( pi x)/( 4))^(tan""( pix)/( 2))

underset( x rarr 2^(+))("Lim")g(x)=

The limit underset( x rarr0 ) ( "lim") ( 1- cos x sqrt( cos 2x) )/( x^(2)) is equal to

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

lim_(xrarr1)(1-x)tan((pix)/2) is equal to

underset(x rarr 0)(lim) (2x)/(tan 2x) is

underset( x rarr 0 ) ( "lim")( (1- cos 2x) ( 3 + cos x ))/( x tan 4x) is equal to :

lim_(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

lim_(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to

lim_(xtooo) (1)/(x+1)tan((pix+1)/(2x+2)) is equal to