Home
Class 11
MATHS
" The total number of ordered pairs "(x,...

" The total number of ordered pairs "(x,y)" satisfying "|x|+|y|=2" and "sin((pi x^(2))/(3))=1" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pairs (x,y) satisfying |x|+|y|=2 and sin""((pix^(2))/(3))=1 is/are

The total number of ordered pair(x,y) satisfying |x|+|y|=4,sin((pi x^(2))/(3))=1 is equal to

The total number of ordered pairs (x,y) satisfying |x|+|y|=4, sin((pi)x^(2)//3)=1 is equal to

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to 2 (b) 3 (c) 4 (d) 6

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to a)4 b)6 c)10 d)12

The total number of ordered pairs (x , y) satisfying |x|+|y|=2,sin((pix^2)/3)=1, is equal to a)4 b)6 c)10 d)12