Home
Class 12
MATHS
int (sec^(2)x)/(log (tanx)^(tanx))dx=...

`int (sec^(2)x)/(log (tanx)^(tanx))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sec^(2)xdx)/(log (tan x)^(tanx)) =

int(sec^(2)x)/((1+tanx))dx

int(sec^(2)x)/((1+tanx))dx

int (sec^(2)x)/(3+4tanx)dx=

int(sec^(2)x+1)/(x+tanx)dx

Evaluate the following integrals: int(sec^2x)/((tanx+1)(tanx+2))dx

int(sec^(2)x)/(sqrt(tanx))dx

int(sec^(2)x)/(sqrt(tanx))dx

Evaluate the following : int_(0)^(pi//4)(sec^(2)x)/((1+tanx)(2+tanx))dx