Home
Class 12
MATHS
Suppose a matrix A satisfies A^(2)-5A+7I...

Suppose a matrix A satisfies `A^(2)-5A+7I=0`. If `A^(8)=aA+bI`, find a-b.

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose a matrix A satisfies A^(2)-5A+7I=0. If A^(5)=aA+bI, then the value of 2a+b is:

Suppose a Matrix A satisfies A^(2)-5A+7I=0 .If A^(5)=aA+bI ,then the values of 2a+b is

If matrix A satisfies the equation A^2+5A+6I=0 then A^3 is

Let A be a square matrix of order 3 satisfies A^(3)-6A^(2)+7A-8I=0 & B=A-2I If |A|=8 & |"adj"(I-2A^(-1))|=K, then [K] ………where [.] represents G.I.F

Let A be a square matrix satisfying A^(2)+5A+5I=0 . The inverse of A+2I is equal to :

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is