Home
Class 9
MATHS
x^(4)+3x^(3)+3x^(2)+2t+1...

x^(4)+3x^(3)+3x^(2)+2t+1

Promotional Banner

Similar Questions

Explore conceptually related problems

If the order of ax^(5) + 3x^(4) + 4x^(3) + 3x^(2) + 2x +1 is 4 then a = …………..

int(x^(4)+3x^(3)+x^(2)-1)/(x^(3)+x^(2)-x-1)dx

Check whether the first polynomial is factor of Second polynomial by dividing: t^2-3,2t^(4)+3t^(3)-2t^(2)-9t-12 (ii) x^(2)+3x+1,3x^(4)+5x^(3)-7x^(2)+2x+2 (iii) x^(3)-3x+1,x^(5)-4x^(3)+x^(2)+3x+1

If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(x^(2)-3,x+4,3x):}| then t is equal to

If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(x^(2)-3,x+4,3x):}| then t is equal to

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If p x^4+q x^3+r x^2+s x+t = |[x^2+3x, x-1, x+3],[x+1, 2-x, x-3], [x-3, x+4, 3x]| then

Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))" w.r.t. ""tan"^(-1)(2x)/(1-x^(2))