Home
Class 11
PHYSICS
The relation gives the value of 'x' x=(a...

The relation gives the value of `'x'` `x=(a^(3)b^(3))/(csqrt(d))`
Find the percentage error in `'x'` if the percentagr error in `a,b,c` and `d` are `2%, 1%, 3%` and `4%` respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

A physical quantity X is given by X=(a^(2)b^(2))/(sqrt(c).d) Find the relative error and percentage error in X if percentage errors in a,b,c and d are 1%,3%,4% and 2% respectively.

If the formula for a physical quantity is W=(a^(4)b^(3))/(c^(2)sqrt(d)) and if percentage errors in the measurement of a, b, c and d are 1%, 2%, 3% and 4% respectively. Find the percentage error in W.

A physical quantity x is calculated from the relation x = ( a^(2) b^(3))/(c sqrt( d)) . If the percentage error in a, b , c , and d are 2% , 1% , 3%, and 4% , respectively , what is the percentage error in x ?

A physical quantity x is calculated from the relation x = ( a^(2) b^(3))/(c sqrt( d)) . If the percentage error in a, b , c , and d are 2% , 1% , 3%, and 4% , respectively , what is the percentage error in x ?

If the formula for a physical quantity is X=frac(a^4b^3)(c^frac(1)(3)d^frac(1)(2)) and if the percentage error in the measurements of a,b,c and d are 2%, 3%, 3 % and 4% respectively. Calculate percentage error in X.

A physical quantity P is related to four observables a, b, c and d as follows: P = (a^(3)b^(3))/(sqrt(cd)) The percentage errors of measurement in a,b, c and d are 1%, 3%, 4%, and 2% respectively. What is the percentage error in the quantity P? If the value of P calculated using the given relation turns out to be 3.763, to what value should the result be rounded off?