Home
Class 12
MATHS
If y= e ^(mcos ^(-1)x) ,then (1-x^(2) )...

If ` y= e ^(mcos ^(-1)x) ,then (1-x^(2) ) (d^(2)y)/(dx^(2)) -x(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cos (mcos ^(-1) x ),then (1-x^(2)) (d^(2)y)/(dx^(2) )-x( dy)/(dx)=

If y=sin (msin ^(-1) x),then (1-x^(2))(d^(2)y)/(dx^(2))-x( dy)/(dx)=

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y = sin (log _(e) x) then (x ^(2) (d ^(2) y)/(dx ^(2)) +x (dy )/(dx)=

If y=sin(mcos^(-1)x),"show that "(1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+m^(2)y=0

If y=cos(mcos^(-1)x) , then prove that : (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx+m^(2)y=0 .

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)