Home
Class 12
MATHS
If the value of int0^pi(x/(1+sinx))^2dx=...

If the value of `int_0^pi(x/(1+sinx))^2dx=lambda`, then find the value of the integral `=int_0^pi[(2x^2*cos^2(x/2))/(1+sinx)^2]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

Evaluate int_0^(pi/2)(cosx)/(1+sinx)^2dx

Evaluate int_0^pi x^2 sinx dx

Evaluate the integrals int0pi/2(sinx)/(1+cos^2x)dx

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Evaluate the integral int_(0)^(pi) (x sinx)/(1+cos^(2)x) dx