Home
Class 11
MATHS
C = {x : x^3=-1, x in R} ....

`C = {x : x^3=-1, x in R} `.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(1//3)(x-2)^(2//3) for all x , then the domain of f' is a. x in R-{0} b. {x|x > 0} c. x in R-{0,2} d. x in R

If f(x)=x^(1//3)(x-2)^(2//3) for all x , then the domain of f' is x in R-{0} b. {x|x>>0} c. x in R-{0,2} d. x in R

If f(x)=x^(1//3)(x-2)^(2//3) for all x , then the domain of f' is a. x in R-{0} b. {x|x > 0} c. x in R-{0,2} d. x in R

If f(x)=x^(1/3)(x-2)^(2/3) for all x, then the domain of f' is x in R-{0} b.{x|x:)0} c.x in R-{0,2} d.x in R

The roots of the equation are ∣ x C r x+1 ​ C r ​ x+2 ​ C r ​ ​ n−1 ​ C r ​ n ​ C r ​ n+1 ​ C r ​ ​ n−1 ​ C r−1 ​ n ​ C r−1 ​ n+1 ​ C r−1 ​∣ =0 are a. x=n, b. x=n+1, c. x=n-1, d. x=n-2.

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are a) x=n b) x=n+1 c) x=n-1 d) x=n-2

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are x=n b. x=n+1 c. x=n-1 d. x=n-2

The roots of the equation |^x C_r^(n-1)C_r^(n-1)C_(r-1)^(x+1)C_r^n C_r^n C_(r-1)^(x+2)C_r^(n+1)C_r^(n+1)C_(r-1)|=0 are a) x=n b) x=n+1 c) x=n-1 d) x=n-2

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .