Home
Class 10
MATHS
Prove that following identities (sinA-...

Prove that following identities
`(sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identity : (sin A-sin B)/(cosA+ cosB)+ (cosA-cosB)/(sinA+sinB)=0 .

Prove that (sin A+sinB)/(cosB-cosA)=(cos A+cosB)/(sinA-sinB) .

(sinA-sinB)/(cosA+cosB) is equal to

Prove the following : cos4A-cos4B = 8(cosA-cosB)(cosA+cosB)(cosA-sinB)(cosA+sinB)

Prove the following identities: tan^2A-tan^2B=(cos^2B-cos^2A)/(cos^2Bcos^2A)=(sin^2A-sin^2B)/(cos^2Acos^2B) (sinA-sinB)/(cosA+cosB)+(cosA-cosB)/(sinA+sinB)=0

Prove that (sinA+sinB)/(cosA+cosB)=tan((A+B)/2)

Prove that (sinA + sinB)/(cosA + cosB)= tan((A+B)/2)

Show that ((sinA+sinB)/(cosA+cosB))^(n) + ((cosA-cosB)/(sinA-sinB))^(n) = 2 "tan"^(n) (A+B)/2 when n is an even integer, 0, when n is an odd integer.

(sin^2A-sin^2B)/(sinA.cosA-sinB.cosB)=....

Prove that : (sinA+sinB)/(cosA+cosB)= tan frac (A+B)(2) .