Home
Class 12
MATHS
यदि x=cos theta +i sin theta, तो सिद्ध क...

यदि `x=cos theta +i sin theta,` तो सिद्ध कीजिए कि `(x^(2n)-1)/(x^(2n)+1)= i tan n theta. `

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=cos theta+i sin theta, then the value of (z^(2n)-1)/(z^(2n)+1)(A)i tan n theta(B)tan n theta(C)i cot n theta(D)-i tan n theta

If n is an integer and z=cos theta+i sin theta , then (z^(2 n)-1)/(z^(2 n)+1)=

If n is an integer then show that (1 + cos theta + i sin theta)^(n) + (1 + cos theta - i sin theta )^(n) = 2^(n+1) cos ^(n) ( theta//2) cos ((n theta)/2) .

[(1 + cos theta + i sin theta) / (sin theta + i (1 + cos theta))] ^ (4) = cos n theta + i sin n theta

If ((1 + cos theta + i sin theta ) /(i+ sin theta + i cos theta ))= cos ntheta + i sin n theta then n is equal to :

If (cos theta + i sin theta)(cos 2 theta +i sin 2 theta ) …(cos n theta + i sin n theta)=1 then the value of theta is (m are integers)-

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0 if theta=n pi,n in IQ(b)A=(2n+1)pi,n in Itheta=2n pi,n in I(d) none of these

Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/(1+cos theta - i sin theta))^n= cos n theta + i sin n theta , where i = sqrt(-1)