Home
Class 11
MATHS
Prove that: sin^(2)pi/8+sin^(2)(3pi)/(...

Prove that:
`sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^4((pi)/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

"sin"^(4)pi/8" +sin"^(4)(3pi)/8" +sin"^(4)(5pi)/8" +sin"^(4)(7pi)/8=

Show that: sin^2 pi/8 + sin^2 (3pi)/8+sin^2 (5pi)/8+sin^2 (7pi)/8=2

Prove that sin^(4) pi/8+ sin^(4) 3pi/8 + sin^(4) 5pi/8 + sin^(4) 7pi/8 = 3/2 .

Prove (i) "sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8)+"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)=2 (ii) [1+cotalpha-sec((pi)/(2)+alpha)] [1+cotalpha+sec((pi)/(2)+alpha)]=2cotalpha

4.Prove that sin^(2)((pi)/(8))+sin^(2)((3 pi)/(8))=1

(cos^(2)pi)/(8)+(sin^(2)(3 pi))/(8)+(sin^(2)(5 pi))/(8_(sin)^(2))(7 pi)/(8)=2

prove that "sin"^4pi/8+"sin"^4(3pi)/8+"sin"^4(5pi)/8+"sin"^4 (7pi)/8=3/2

sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=