Home
Class 12
MATHS
If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A...

If det, `(A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B` and `B^(3)A=A^(3)B`, then find the value of det. `(A^(3)+B^(3)+C^(3))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=

|A-B| ne 0 , A^(4)=B^(4) , C^(3)A=C^(3)B , B^(3)A=A^(3)B , then |A^(3)+B^(3)+C^(3)|=

|A-B|!=0,A^(4)=B^(4),C^(3)A=C^(3)B,B^(3)A=A^(3)B then |A^(3) + B^(3) +C^(3)| = a)0 b)1 c) |A|^(3) d)63

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

A and B are different matrices of order n satisfying A^(3)=B^(3) and A^(2)B=B^(2)A . If det. (A-B) ne 0 , then find the value of det. (A^(2)+B^(2)) .

If A,B and C are square matrices of order n and det (A)=2, det(B)=3 and det (C)=5, then find the value of 10det (A^(3)B^(2)C^(-1)).