Home
Class 12
MATHS
The value of lim(nrarroo)(cos x cos .(x)...

The value of `lim_(nrarroo)(cos x cos .(x)/(2)cos.(x)/(4)..cos .(x)/(2^(n)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

The value of lim_(n rarr oo) cos ((x)/(2)) cos ((x)/(4))cos ((x)/(8))…...cos((x)/(2^(n))) is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

Evaluate lim_(n rarr oo){cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))}

lim_ (n rarr oo) ((cos x) / (2) * (cos x) / (4) (cos x) / (2 ^ (n)))

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .