Home
Class 12
MATHS
If y=log(x+sqrt(x^2+a^2)), show that (...

If `y=log(x+sqrt(x^2+a^2))`, show that
`(a^2+x^2)y_2+xy_1=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= [Log(x+sqrt(x^2+1))]^2 then show that (x^2+1)y_2+xy_1=0

If y=log[x+sqrt(x^2+a^2)\ ] , show that (x^2+a^2)(d^2\ y)/(dx^2)+x(dy)/(dx)=0

If y=log[x+sqrt(x^(2)+a^(2))], show that ((x^(2)+a^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

If y={x+sqrt(x^(2)+1)}^(m), show that (x^(2)+1)y_(2)+xy_(1)-m^(2)y=0

answeer the following : (i) if y sqrt(x^2+1)=log(sqrt(x^2+1)-x) , show that , (x^2+1) dy/dx +xy+1=0

If y=sin^(-1)x/sqrt(1-x^(2)) show that (1-x^(2))y_(2)-3xy_(1)-y=0 .

If y = (x+ sqrt(1+x^2))^n then prove that (1+x^2)y_2+xy_1 = n^2y .

If y=log(x+sqrt(1+x^(2))), then show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=0