Home
Class 11
MATHS
If ("log"3)/(x-y) = ("log"5)/(y-z) = ("l...

If `("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If ("log"x)/(y - z) = ("log" y)/(z - x) = ("log" z)/(x - y) , then prove that xyz = 1.

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If log x = (log y) / (2) = (log z) / (5), thtenx ^ (4) y ^ (3) z ^ (- 2) =

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is