Home
Class 12
PHYSICS
Ampere's law provides us an easy way to ...

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is `ointvecB.dl=mu_0I_("in")`.
The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop.
Only the current inside the Amperian loop contributes in

Promotional Banner

Similar Questions

Explore conceptually related problems

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. If the current density in a linear conductor of radius a varies with r according to relation J=kr^2 , where k is a constant and r is the distance of a point from the axis of conductor, find the magnetic field induction at a point distance r from the axis when rlta. Assume relative permeability of the conductor to be unity.

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. If the current density in a linear conductor of radius a varies with r according to relation J=kr^2 , where k is a constant and r is the distance of a point from the axis of conductor, find the magnetic field induction at a point distance r from the axis when rlta. Assume relative permeability of the conductor to be unity.

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. In the above question, find the magnetic field induction at a point distance r from the axis when rgta. Assume relative permeability of the medium surrounding the conductor to be unity.

Ampere's law provides us an easy way to calculate the magnetic field due to a symmetrical distribution of current. Its mathemfield expression is ointvecB.dl=mu_0I_("in") . The quantity on the left hand side is known as line as integral of magnetic field over a closed Ampere's loop. In the above question, find the magnetic field induction at a point distance r from the axis when rgta. Assume relative permeability of the medium surrounding the conductor to be unity.

Using Ampere's circuital theorem, calculate the magnetic field due to an infinitely long wire carrying current I.

A famous law in physics is expressed as ointbarB.bar(dl)=mu_0I Using the above get an expression for the intensity of magnetic field at a point due to an infinite current carrying wire.

State Ampere's circuital law. Use this law to find the magnetic field due to a straight infinite current carrying wire. How are the magnetic fields lines different from the electrostatic field lines ?

A: In any magnetic field region the line integral ointvecB.vec(dl) along a closed loop is always zero. R: The magnetic field vecB in the expressioin oint vecB.vec(dl) is due to the currents enclosed only by the loop.

A: In any magnetic field region the line integral ointvecB.vec(dl) along a closed loop is always zero. R: The magnetic field vecB in the expressioin oint vecB.vec(dl) is due to the currents enclosed only by the loop.

In Ampere's law (oint (vec B).(vec dl))=(mu_0)I , the current outside the curve is not included on the right hand side. Does it mean that the magnetic field B calculated by using Ampere's law , gives the contribution of only the currents crossing the area bounded by the curve?