Home
Class 12
MATHS
Consider the matrices A=[4 6-1 3 0 2 1-...

Consider the matrices `A=[4 6-1 3 0 2 1-2 5],B=[2 4 0 1-1 2],C=[3 1 2]dot` Which of the following are defined? `(A B)^t C` (b) `C^t C(A B)^T` `C^T A B` (d) `A^T A B B^T C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the matrices A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),(-1,2)], C=[(3),(1),(2)] Which of the following are defined? (a) (A B)^t C (b) C^T C(A B)^T (c) C^T A B (d) A^T A B B^T C

Select the correct options from the given alternatives:Consider the matrices A=[[4,6,-1],[3,0,2],[1,-2,5]],B=[[2,4],[0,1],[-1,2]],C=[[3],[1],[2]] out of the given matrix product (i)(AB)^T C(ii)C^T C(AB)^T(iii)C^T AB(iv)A^T ABB^T C

For the matrices A and B , A=[[2 ,1 ,3 ] , [4 ,1 ,0 ]] , B=[[1 , -1] , [ 0, 2 ] , [ 5 , 0]] verify that (A B)^T=B^T\ A^T

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] , show that (A-B)^(T)=A^(T)-B^(T) .

Consider three square matrices A, B and C of order 3 such that A^(T)=A-2B and B^(T)=B-4C , then the incorrect option is

Consider three square matrices A, B and C of order 3 such that A^(T)=A-2B and B^(T)=B-4C , then the incorrect option is

Let A=[(1, 2), (1, 3)], B=[(4, 0), (1, 5)], C=[(2, 0), (1, 2)] show that (A-B)^(T)=A^(T)-B^(T)

If A=[[ 1 ,4 , 7 ] , [2 , 5 , 8 ]] and B=[[-3, 4 , 0 ],[ 4 ,-2 , -1 ]] then show that ( A + B )^T = A^T + B^T

Of the matrices A=[(2,1,3),(4,1,0)] and B=[(1,-1),(0,2),(5,0)] Find AB , B^T , (AB)^T

If A=[[1,0,1],[0,2,0],[1,-1,4]],A=B+C,B=B^(T) and C=-C^(T) , then C=