Home
Class 12
MATHS
If x1,x2,x3,x4 be the roots of the equat...

If `x_1,x_2,x_3,x_4` be the roots of the equation`x^4 + a x^3+b x^2 +cx + d =0`. If `x_1 +x_2 = x_3 + x_4` and `a,b,c,d in R`,then (i) lf a =2, then the value of b-c (ii) `b <0`, then how many different values of a, we may have

Promotional Banner

Similar Questions

Explore conceptually related problems

Let x_1,x_2,x_3,x_4 ,be the roots (real or complex) of the equation x^4+ax^3+bx^2+cx+d=0 . If x_1+x_2=x_3+x_4 and a,b,c,d in R, then If a=2, then the value of b-c is

Let x_(1),x_(2),x_(3),x_(4) be the roots (real or complex) of the equation x^(4)+ax^(3)+bx^(2)+cx+d=0. If x_(1)+x_(2)=x_(3)+x_(4) and a,b,c, d in R, then find the value of b-c

If 1,2,3 and 4 are the roots of the eqaution x^(4) + ax^(3) + b x^(2) + cx + d = 0, then a + 2b + c =

If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have

If a, b,c , d are the roots of the equation : x^(4) + 2x^(3) + 3x^(2) + 4x + 5 = 0 , then 1 + a^(2) + b^(2) + c^(2) + d^(2) is equal to :

Number of roots of equation 3^(|x|)-|2-|x||=1 is a. 0 b. 2 c. 4 d. 7

Number of roots of equation 3^(|x|)-|2-|x||=1 is a. 0 b. 2 c. 4 d. 7

Number of roots of equation 3^(|x|)-|2-|x||=1 is a.0 b.2 c.4d.7