Home
Class 12
MATHS
If u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p...

If `u=sin(mcos^(-1)x),v=cos(msin^(-1)x),p rov et h a t(d u)/(d v)=sqrt((1-u^2)/(1-v^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

u=sin(m cos^(-1)x),v=cos(m sin^(-1)x), provethat (du)/(dv)=sqrt((1-u^(2))/(1-v^(2)))

If y=xsin^(-1)x+sqrt(1-x^2), p rov et h a t(dy)/(dx)=sin^(-1)x

If u = tan^(-1) (( sqrt(1- x^(2) ) - 1)/( x) ) and v = sin^(-1) x , then (du)/(dv) is equal to a) sqrt( 1- x^2) b) - (1)/(2) c)1 d)-x

Let U=sin^(-1)((2x)/(1+x^2)) and V=tan^(-1)((2x)/(1-x^2)) , then (d U)/(d V)= (a) 1//2 (b) x (c) (1-x^2)/(1+x^2) (d) 1

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv) .

The function u=e^(x)sin x,v=e^(x)cos x satisfy the equation (a) v(du)/(dx)-u(du)/(dx)=u^(2)+v^(2)(b)(d^(2)u)/(dx^(2))=2v(c)d^(2)v())/(dx^(2))=-2u(d)(du)/(dx)+(dv)/(dx)=2v

If u = tan^(-1)"" (sqrt ( 1+x^2)-1)/(x) and v = tan^(-1) x , find (du)/(dv)

If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e n(d u)/(d v) is