Home
Class 12
MATHS
यदि f(x)=x. (e^(1//x)-e^( -1//x))/(e^(1...

यदि `f(x)=x. (e^(1//x)-e^( -1//x))/(e^(1//x)+e^(-1//x)), x != 0`
`f(0)=0`, तो सिद्ध कीजिए कि `f(x)` बिंदु `x=0` पर अवकलनीय नहीं है

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

f(x) = x [(e^(1//x) - e^(-1//x))/(e^(1//x) + e^(-1//x))] , (x ne 0)= 0 then f(x) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(-1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"