Home
Class 12
MATHS
If A and B are non - singular matrices o...

If A and B are non - singular matrices of order `3xx3`, such that `A=(adjB)` and `B=(adjA)`, then det `(A)+det(B)` is equal to (where `det(M)` represents the determinant of matrix M and adj M represents the adjoint matrix of matrix M)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are non-singular matrices of Q. 1 order 3times3 such that A=(adj B) and B=(adj A) then det(A)+det(B) is equal to

If A and B are square matrices of order 3 such that det.(A)=-2 and det.(B)=1, then det.(A^(-1)adjB^(-1). adj (2A^(-1)) is equal to

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

Let A and B be two square matrices of order 3 such that |A|=3 and |B|=2 , then the value of |A^(-1).adj(B^(-1)).adj(2A^(-1))| is equal to (where adj(M) represents the adjoint matrix of M)

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to

Let M and N are two non singular matrices of order 3 with real entries such that (adjM)=2N and (adjN)=M . If MN=lambdaI , then the value the values of lambda is equal to (where, (adj X) represents the adjoint matrix of matrix X and I represents an identity matrix)

Let M and N are two non singular matrices of order 3 with real entries such that (adjM)=2N and (adjN)=M . If MN=lambdaI , then the value the values of lambda is equal to (where, (adj X) represents the adjoint matrix of matrix X and I represents an identity matrix)

Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)] , then A^(2)+2A^(3)+3A^(4)+5A^(5) is equal to (where M^(T) and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)

Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)] , then A^(2)+2A^(3)+3A^(4)+5A^(5) is equal to (where M^(T) and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)