Home
Class 12
MATHS
int(dx)/(e^(x)+1-2e^(-x))=...

`int(dx)/(e^(x)+1-2e^(-x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(3e^(x)+2e^(-x))dx=

STATEMENT-1 : int(dx)/(e^(x)+e^(-x)+2)=-(1)/(e^(x)+1)+c and STATEMENT-2 : int(d(f(x)))/((f(x))^(2))=-(1)/(f(x))+c

STATEMENT-1 : int(dx)/(e^(x)+e^(-x)+2)=-(1)/(e^(x)+1)+c and STATEMENT-2 : int(d(f(x)))/((f(x))^(2))=-(1)/(f(x))+c

int (1)/(e^(x)+2e^(-x)-3)dx=

int(1)/(e^(x)+e^(-x))dx

Compute the following integrals: int(e^x+e^(-x))/(e^x-e^(-x)) dx or int(e^(2x) +1)/(e^(2x)-1)dx

if int dx/(e^(x) (e^(x)+1)^(2))=(2e^(x)+1)/(e^(x)(e^(x)+1))+ k log|1+e^(-x)|+c then the value of k is -

(i) int (dx)/(e^x+e^(-x)) (ii) int e^x/(e^(2x)+1) dx