Home
Class 7
MATHS
{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}= ?...

`{(frac(1)(3))^(-3)-(frac(1)(2))^(-3)}=` ?

Promotional Banner

Similar Questions

Explore conceptually related problems

(frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)= ?

(frac(-3)(2))^(-1)= ?

Simplify each of the following and express each as a rational number: ( i ) (frac(3)(2))^(4) xx (frac(1)(5))^(2) ( ii ) (frac(-2)(3))^(5) xx (frac(-3)(7))^(3) ( iii ) (frac(-1)(2))^(5) xx 2^(3) xx (frac(3)(4))^(2) ( iv ) (frac(2)(3))^(2) xx (frac(-3)(5))^(3) xx (frac(7)(2))^(2) ( v ) {(frac(-3)(4))^(3)-(frac(-5)(2))^(3)} xx 4^(2)

Express each of the following as a rational number: ( i ) 5^(-3) ( ii ) (-2)^(-5) ( iii ) (frac(1)(4))^(-4) ( iv ) (frac(-3)(4))^(-3) ( v ) (-3)^(-1) xx (frac(1)(3))^(-1) ( vi ) (frac(5)(7))^(-1) xx (frac(7)(4))^(-1) ( vii ) (5^(-1)-7^(-1))^(-1) ( viii ) {(frac(4)(3))^(-1)-(frac(1)(4))^(-1)}^(-1) ( ix ) {(frac(3)(2))^(-1) div (frac(-2)(5))^(-1)} ( x ) (frac(23)(25))^(@)

{(frac(3)(4))^(-1)-(frac(1)(4))^(-1)}^(-1)= ?

Evaluate {(frac(1)(3))^-1 - (frac(1)(4))^-1}^-1

EXAMPLE 13. Simplify: (frac(1)(2))^(-2)+(frac(1)(3))^(-2)+(frac(1)(4))^(-2)

Find x such that (frac(3)(5))^(3) xx (frac(3)(5))^(-6)=(frac(3)(5))^(2x-1).

Simplify: ( i ) [{(frac(-1)(4))^(2)}^(-2)]^(-1) ( ii ) {(frac(-2)(3))^(2)}^(3) ( iii ) (frac(-3)(2))^(2) div (frac(-3)(2))^(6) ( iv ) (frac(-2)(3))^(7) div (frac(-2)(3))^(4)

Solve (1-frac(1)(2))(1-frac(1)(3))(1-frac(1)(4))....(1-frac(1)(n))