Home
Class 12
MATHS
सिद्ध कीजिए कि sin^(-1)(2x sqrt(1-x^(2)...

सिद्ध कीजिए कि `sin^(-1)(2x sqrt(1-x^(2)))=2 sin^(-1)x , |x| le (1)/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1) (2x sqrt(1-x^(2)) ) = 2 sin^(-1) x , -1/(sqrt(2))le x le 1/(sqrt(2)

Prove that : sin^(-1) (2x sqrt(1-x^(2)))= 2 sin^(-1) x, - 1/(sqrt(2)) le x le 1/(sqrt(2))

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

Prove that : 2 sin^-1 x = sin^-1 (2x sqrt(1-x^2)), |x| le (1/(sqrt2)

Prove that : tan^(-1)((2xsqrt(1-x^(2)))/(1-2x^(2))) =2sin^(- 1)x when : - 1/(sqrt(2)) le x le 1/(sqrt(2))

Prove the following : sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,x in[-1/sqrt2,1/sqrt2]

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=