Home
Class 12
MATHS
Let f(x)=e^(ax)sin(bx+c)and f''(x)=r^2e...

Let `f(x)=e^(ax)sin(bx+c)`and `f''(x)=r^2e^(ax)sin(bx+theta)`,then-

Promotional Banner

Similar Questions

Explore conceptually related problems

e^(ax).sin^-1bx

e^(ax).sin^-1bx

If u=e^(ax)sin bx and v=e^(ax)cos bx, then what is

d/(dx)[e^(ax)/(sin(bx+c))]=

d/(dx)[(e^(ax))/(sin(bx+c))]=

(d)/(dx) {e ^(ax)sin (bx+c)}=

int (e ^ (ax) + sin bx) dx

If f(x)=e^(ax) sin ax and f"(0) = 2, then what is a ?

If f(x)=be^(ax)+ae^(bx) , then f" (0) =