Home
Class 12
MATHS
" Prove that "sin^(-1)x+cos^(-1)x=(pi)/(...

" Prove that "sin^(-1)x+cos^(-1)x=(pi)/(2),x in[-1,1]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)x+cos^(-1)x=pi/2 , if x in [-1,1]

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

prove that sin^(-1)(x)+cos^(-1)(x)=pi/2 , -1<=x<=1

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

Prove that : sin^-1 x + sin^-1 2x = pi/3

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1