Home
Class 14
MATHS
If log\ a/b+log\ b/a=log(a+b), then a. a...

If `log\ a/b+log\ b/a=log(a+b),` then a. `a+b=1` b. `a-b=1` c. `a=b` d. `a^2-b^2=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log backslash(a)/(b)+log backslash(b)/(a)=log(a+b), then a.a+b=1 b.a-b=1 c.a=b d.a^(2)-b^(2)=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If log a=(1)/(2)log b=(1)/(5)log c then a^(4)b^(3)c^(-2)=

if log((a+b)/(2))=(1)/(2)(log a+log b), prove that a=b

If log ((a + b)/(2)) = (1)/(2) (log a + log b) , then a is equal to

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1