Home
Class 9
MATHS
" a) "(tan A)/(C(1)+tan^(2)A)^(2))+(cos ...

" a) "(tan A)/(C_(1)+tan^(2)A)^(2))+(cos A)/((1+cot^(2)A)^(2))=sin A*C_(0)s

Promotional Banner

Similar Questions

Explore conceptually related problems

(tan A)/((1+tan^(2)A)^(2))+(cot A)/((1+cot^(2)A)^(2))=sin A cos A

(tan theta)/((1+tan^(2)theta)^(2))+(cot theta)/((1+cot^(2)theta)^(2))=sin theta cos theta

Prove that: (tan A)/(1+tan^2A)^2 + (cot A)/(1+cot^2A)^2 = sin A cos A .

(c) (sin A)/(1+cos A)=tan(A/2)

(sin^(2)A)/(1+cot A)+(cos^(2)A)/(1+tan A)=1-sin A*cos A

(tan ^ (3) A) / (1 + tan ^ (2) A) + (cot ^ (3) A) / (1 + cot ^ (2) A) = sec A cos ecA-2sin A cos A

(sec 8 A-1)/( sec 4A-1)= ..................... A) (tan 2A)/( tan 8A) B) (tan 8A)/(tan 2A) C) (cot 8A)/(cot 2A) D) (tan 6A)/(tan 2A)

Prove :sin^(2)A cot^(2)A+cos^(2)A tan^(2)A=1

(1+tan^(2)A)/(1+cot^(2)A) is equal to sec^(2)A(b)-1(c)cot^(2)A(d)tan^(2)A

Prove that : (tan A + (1)/ (cos A))^(2) + (tan A - (1)/ (cos A))^(2) = 2 ((1 + sin^(2) A)/ (1 - sin^(2) A))