Home
Class 9
MATHS
If a+b=p and ab=q , show that 1/a^3+1/...

If `a+b=p and ab=q` , show that `1/a^3+1/b^3=p^3/q^3-3p/q^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

p^3+q^3+r^3-3pqr=4 . lf a=q+r, b=r+p and c=p+q, then what is the value of a^3 + b^3 + c^3 -3abc ? p^3+q^3+r^3-3pqr=4 है। यदि a=q+r,b=r+p तथा c=p+q, है, तो a^3 + b^3 + c^3 -3abc का मान क्या है?

If two positive integers a and b are expressible in the form a=pq^(2) and b=p^(3)q;p,q being prime numbers,then LCM(a,b) is pq( b) p^(3)q^(3) (c) p^(3)q^(2)( d )p^(2)q^(2)

If two positive integers a and b are expressible in the form a=p q^2 and b=p^3q ; p ,\ q being prime numbers, then LCM (a ,\ b) is (a) p q (b) p^3q^3 (c) p^3q^2 (d) p^2q^2

If one root is square of the other root of the equation x^(2)+px+q=0, then the relation between p and q is (2004,1M)p^(3)-(3p-1)q+q^(2)=0p^(3)-q(3p+1)+q^(2)=0p^(3)+q(3p-1)+q^(2)=0p^(3)+q(3p+1)+q^(2)=0

If one root is square of the other root of the equation x^(2)+px+q=0, then the relation between p and q is p^(3)-q(3p-1)+q^(2)=0p^(3)-q(3p+1)+q^(2)=0p^(3)+q(3p-1)+q^(2)=0p^(3)+q(3p+1)+q^(2)=0

If two positive integers a and b are expressible in the form a =pq^2 and b=p^3q , p and q being prime numbers, then HCF (a,b) is a)pq b)p^3q^3 c)p^3q^2 d)p^2q^2