Home
Class 12
MATHS
[" Let "vec a,vec b" and "vec c" be thre...

[" Let "vec a,vec b" and "vec c" be three unit vectors such that "],[qquad [|vec a-vec b|^(2)+|vec a-vec c|^(2)=8],[" Then "|vec a+2vec b|^(2)+|vec a+2vec c|^(2)" is equal to "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a, vec b, vec c are unit vector where | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c + vec a | ^ (2) = 3 then | vec a + 2vec b + 3vec c | ^ (2) is equal to

If vec a,vec b and vec c are unit vectors satisfying |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)=9 then |2vec a+5vec b+5vec c| is.

If vec a, vec b and vec c are unit vectors then | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) is equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If vec a,vec b,vec c are unit vector,prove that |vec a-vec b|^(2)+|vec b-vec c|^(2)+|vec c-vec a|^(2)<=9

If vec a, vec b, vec c are unit vectors then |vec a - vec b|^(2) + |vec b - vec c|^(2) + |vec c - vec a|^(2) does not exceed.

If vec a, vec b and vec c are unit vectors satisfying | vec a-vec b | ^ (2) + | vec b-vec c | ^ (2) + | vec c-vec a | ^ (2) = 9 then | 2vec a + 7vec b + 7vec c | =

Let vec a, vec b and vec c are unit coplanar vectors then the scalar triple product [2 vec a - vec b 2 vec b - vec c 2 vec c - vec a]

If vec a,vec b,vec c are three unit vectors,then the maximum value of (1)/(5)(|vec a+vec b-vec c|^(2)+|vec b+vec c-vec a|^(2)+|vec c+vec a-vec b|^(2)) is equal to: