Home
Class 12
PHYSICS
xsqrt(1+y)+ysqrt(1+x)=0, then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0`, then `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xsqrt(1+y)+ysqrt(1+x)=0, find ("dy")/("dx") . To prove (dy)/(dx)= -1/(1+x)^2

If y= xsqrt(x) then (dy)/(dx) =?

If y=sin ^(-1) (xsqrt( 1-x) +sqrt(x) sqrt (1-x^(2))),then (dy)/(dx)=

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((1+x)^2)

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

IF xsqrt(1+y)+ysqrt(1+x)=0 , show that, dy/dx=-1/(1+x)^2

If xsqrt(1+y)+ysqrt(1+x)=0 , prove that dy/dx=(-1)/((1+x)^2