Home
Class 12
MATHS
Find (dy)/(dx), when: logsqrt(x^(2)+y^...

Find `(dy)/(dx)`, when:
`logsqrt(x^(2)+y^(2))=tan^(-1).(y)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=log("tan"(x)/(2))

Find dy/dx if log sqrt(x^2+y^2)=tan^(-1) (y/x)

If logsqrt(x^2+y^2)=tan^-1(y/x),then dy/dx is

Find (dy)/(dx) when : log(xy)=x^(2)-y^(2)" when " x=1, y=1

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

find (dy)/(dx), when y=tan^(-1)((2x)/(1-x^(2)))

Find (dy)/(dx) , when: tan(x+y)+tan(x-y)=1

y=(x^(2)+1)tan^(-l)x find (dy)/(dx)

Find (dy)/(dx) when : y= tan^(-1)[sqrt((a-b)/(a+b))"tan"(x)/(2)]