Home
Class 9
MATHS
If 2s = a + b + c, prove that (s-a)^3 ...

If `2s = a + b + c`, prove that `(s-a)^3 + (s-b)^3 +(s-c)^3-3(s-a)(s-b)(s - c) = 1/2 (a^3 + b^3 + c^3-3abc)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s = a + b + c , Then prove that (s-a)^3+(s-b)^3+(s-c)^3-3(s-a)(s-b)(s-c) = 1/2(a^3+b^3+c^3-3abc)

If 2s = a + b + c , then prove that s^3 + (s-2a)^3 +(s-2b)^3 + (s-2c)^3 = 24 (s-a)(s-b)(s-c)

If 2s = a + b + c , then prove that (s-a)^3+(s-b)^3+(s-c)^3+3 abc = s^3

If 3s = 2(a + b + c) , then prove that (s-b-c)^3 + (s-c-a)^3 +(s-a-b)^3+3(b+c-s)(c+a-s)(a+b-s)=0

If c^2 = a^2 + b^2, 2s = a + b + c , then 4s(s-a) (s - b)(s-c)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)