Home
Class 9
MATHS
Find the zero of the polynomial : ...

Find the zero of the polynomial :
`p(x)=x-5`
(ii) `q(x)=x+4`
(iii) `r(x)=2x+5`
(iv) `f(x)=3x+1`
(v) `g(x)=5-4x`
(vi) `h(x)=6x-2`
(vii) `p(x)=ax,ane0`
(viii) `q(x)=4x`

Text Solution

AI Generated Solution

The correct Answer is:
To find the zero of the given polynomials, we need to set each polynomial equal to zero and solve for \( x \). Let's go through each polynomial step by step. ### Step-by-Step Solutions: 1. **Polynomial:** \( p(x) = x - 5 \) **Set it to zero:** \[ x - 5 = 0 \] **Solve for \( x \):** \[ x = 5 \] **Zero of \( p(x) \):** \( 5 \) 2. **Polynomial:** \( q(x) = x + 4 \) **Set it to zero:** \[ x + 4 = 0 \] **Solve for \( x \):** \[ x = -4 \] **Zero of \( q(x) \):** \( -4 \) 3. **Polynomial:** \( r(x) = 2x + 5 \) **Set it to zero:** \[ 2x + 5 = 0 \] **Solve for \( x \):** \[ 2x = -5 \quad \Rightarrow \quad x = -\frac{5}{2} \] **Zero of \( r(x) \):** \( -\frac{5}{2} \) 4. **Polynomial:** \( f(x) = 3x + 1 \) **Set it to zero:** \[ 3x + 1 = 0 \] **Solve for \( x \):** \[ 3x = -1 \quad \Rightarrow \quad x = -\frac{1}{3} \] **Zero of \( f(x) \):** \( -\frac{1}{3} \) 5. **Polynomial:** \( g(x) = 5 - 4x \) **Set it to zero:** \[ 5 - 4x = 0 \] **Solve for \( x \):** \[ 4x = 5 \quad \Rightarrow \quad x = \frac{5}{4} \] **Zero of \( g(x) \):** \( \frac{5}{4} \) 6. **Polynomial:** \( h(x) = 6x - 2 \) **Set it to zero:** \[ 6x - 2 = 0 \] **Solve for \( x \):** \[ 6x = 2 \quad \Rightarrow \quad x = \frac{2}{6} = \frac{1}{3} \] **Zero of \( h(x) \):** \( \frac{1}{3} \) 7. **Polynomial:** \( p(x) = ax \) (where \( a \neq 0 \)) **Set it to zero:** \[ ax = 0 \] **Solve for \( x \):** \[ x = 0 \] **Zero of \( p(x) \):** \( 0 \) 8. **Polynomial:** \( q(x) = 4x \) **Set it to zero:** \[ 4x = 0 \] **Solve for \( x \):** \[ x = 0 \] **Zero of \( q(x) \):** \( 0 \) ### Summary of Zeros: 1. \( p(x) = x - 5 \) → Zero is \( 5 \) 2. \( q(x) = x + 4 \) → Zero is \( -4 \) 3. \( r(x) = 2x + 5 \) → Zero is \( -\frac{5}{2} \) 4. \( f(x) = 3x + 1 \) → Zero is \( -\frac{1}{3} \) 5. \( g(x) = 5 - 4x \) → Zero is \( \frac{5}{4} \) 6. \( h(x) = 6x - 2 \) → Zero is \( \frac{1}{3} \) 7. \( p(x) = ax \) → Zero is \( 0 \) 8. \( q(x) = 4x \) → Zero is \( 0 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the zeros of the polynomial p(x) = x^2+5x+6

Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2

Find the zero of the polynomial : (i) p(x)=x-3 " " (ii) q(x)=3x-4 " " (iii) p(x)=4x-7 " " (iv) q(x)=px+q, p ne 0 (v)p(x)=4x " " (vi) p(x)=(3)/(2)x-1

Find the zeroes of the polynomial ineach of the followning . (i) p(x)=x-4 " " (ii) g(x)=3-6x (iii) q(x)=2x-7 " " (iv) h(y)=2y

Find the zero of the polynomial in each of the followimg cases : (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=ax, a ne 0 (vii) p(x)=cx+d, c ne 0, c,d are real numbers .

Find the zero of the polynomial in each of the following eases: (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=a x , a!=0 (vii) p(x)=c x+d , c!=0, c , d are real numbers.

Find the zero (root) of the polynomial in each of the following cases: f(x)=x-5 (ii) g(x)=2x+5

Find the value of the polynomial 5x-4x^(2)+3 at : (i)x=0 " " (ii) x=-1 " " (iii) x=2

Find the degree of each of the following polynomials : (i) 5x^(2)-2x+1 " " (ii) 1-5t+t^(4) " " (iii) 7 " " (iv) x^(4)-3x^(6)+2