Home
Class 12
MATHS
(y -b)^(2) = 4k (x - a)...

`(y -b)^(2) = 4k (x - a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation whose solution is (y - b)^(2) = 4 k (x - a) (where b,a,k are constants ) is of

If y = 2x + k " touches " x^(2) + y^(2) - 4x - 2y = 0 , then k=

If a, x_1, x_2, …, x_k and b, y_1, y_2, …, y_k from two A. Ps with common differences m and n respectively, the the locus of point (x, y) , where x= (sum_(i=1)^k x_i)/k and y= (sum_(i=1)^k yi)/k is: (A) (x-a) m = (y-b)n (B) (x-m) a= (y-n) b (C) (x-n) a= (y-m) b (D) (x-a) n= (y-b)m

If x=(3)/(k) be the equation of directrix of the parabola y ^(2) + 4 y + 4 x + 2 = 0 then , k is _

Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0

If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2) + y^(2) - 4x - 6y + 4 = 0 are orthogonal , find k.

The value of k for which the circle x ^(2) +y ^(2) - 4x + 6y + 3=0 will bisect the circumference of the circle x ^(2) + y ^(2) + 6x - 4y + k =0 is

If x^(2)+y^(2)=k^(2) , and xy=8-4k , what is (x+y)^(2) in terms of k ?

If x+y=2k-1, and x^(2)+y^(2)=9-4k+2k^(2) , what is xyin terms of k?