Home
Class 12
MATHS
The value of lim(xrarr0) (logx-1)/(x-e),...

The value of `lim_(xrarr0) (logx-1)/(x-e)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarre) (logx-1)/(x-e) , is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

The value of lim_(xrarr0)(1-cosx)/x is

The value of lim_(xrarr1) (logx)/(sin pi x) , is

The value of lim_(xrarr1) (logx)/(sin pi x) , is

value of lim_(xrarr0)(cosx-1)/x^2 is