Home
Class 12
MATHS
n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sq...

n in N,((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8n)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If n in N((1+i)/(sqrt(2)))^(8n)+((1-i)/(sqrt(2)))^(8)n is

If i^(2)=-1 and ((1+i)/(sqrt2))^(n)=((1-i)/(sqrt2))^(m)=1, AA n, m in N , then the minimum value of n+m is equal to

Show that the integral part in each of the following is odd. n in N . (i) (5+2sqrt(6))^(n) (ii) (8+3 sqrt(7))^(n) (iii) (6+sqrt(35))^(n)

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

What is the value of ((-1+i sqrt(3))/(2))^(3n)+((-1-i sqrt(3))/(2))^(3n), where i=sqrt(-1)?

the value of ((-1+sqrt(3)i)/(2))^(3n)+((-1-sqrt(3)i)/(2))^(3n)=

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

n is any integer then arg(((sqrt(3)+i)^(4n+1))/((1-sqrt(3)i)^(4n)))=....

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

Show that ((-1+sqrt(3)i)/(2))^(n)+((-1-sqrt(3i))/(2))^(n) is equal to 2 when n is a multiple of 3 and 3 is equal to -1 when n is any other positive integer.